💥 OpenAI Proxy Server
LiteLLM Server manages:
- Calling 100+ LLMs Huggingface/Bedrock/TogetherAI/etc. in the OpenAI
ChatCompletions
&Completions
format - Set custom prompt templates + model-specific configs (
temperature
,max_tokens
, etc.)
Quick Start​
View all the supported args for the Proxy CLI here
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
Test​
In a new shell, run, this will make an openai.ChatCompletion
request
litellm --test
This will now automatically route any requests for gpt-3.5-turbo to bigcode starcoder, hosted on huggingface inference endpoints.
Replace openai base​
import openai
openai.api_base = "http://0.0.0.0:8000"
print(openai.ChatCompletion.create(model="test", messages=[{"role":"user", "content":"Hey!"}]))
Supported LLMs​
- Bedrock
- Huggingface (TGI)
- Anthropic
- VLLM
- OpenAI Compatible Server
- TogetherAI
- Replicate
- Petals
- Palm
- Azure OpenAI
- AI21
- Cohere
$ export AWS_ACCESS_KEY_ID=""
$ export AWS_REGION_NAME="" # e.g. us-west-2
$ export AWS_SECRET_ACCESS_KEY=""
$ litellm --model bedrock/anthropic.claude-v2
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/<your model name> --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
$ export ANTHROPIC_API_KEY=my-api-key
$ litellm --model claude-instant-1
$ litellm --model vllm/facebook/opt-125m
$ litellm --model openai/<model_name> --api_base <your-api-base>
$ export TOGETHERAI_API_KEY=my-api-key
$ litellm --model together_ai/lmsys/vicuna-13b-v1.5-16k
$ export REPLICATE_API_KEY=my-api-key
$ litellm \
--model replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3
$ litellm --model petals/meta-llama/Llama-2-70b-chat-hf
$ export PALM_API_KEY=my-palm-key
$ litellm --model palm/chat-bison
$ export AZURE_API_KEY=my-api-key
$ export AZURE_API_BASE=my-api-base
$ litellm --model azure/my-deployment-name
$ export AI21_API_KEY=my-api-key
$ litellm --model j2-light
$ export COHERE_API_KEY=my-api-key
$ litellm --model command-nightly
Server Endpoints​
- POST
/chat/completions
- chat completions endpoint to call 100+ LLMs - POST
/completions
- completions endpoint - POST
/embeddings
- embedding endpoint for Azure, OpenAI, Huggingface endpoints - GET
/models
- available models on server
Using with OpenAI compatible projects​
LiteLLM allows you to set openai.api_base
to the proxy server and use all LiteLLM supported LLMs in any OpenAI supported project
- LM-Harness Evals
- FLASK Evals
- ML Flow Eval
- ContinueDev
- Aider
- AutoGen
- guidance
Step 1: Start the local proxy
$ litellm --model huggingface/bigcode/starcoder
Using a custom api base
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/tinyllama --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
OpenAI Compatible Endpoint at http://0.0.0.0:8000
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
LM Harness requires you to set an OpenAI API key OPENAI_API_SECRET_KEY
for running benchmarks
export OPENAI_API_SECRET_KEY=anything
Step 3: Run LM-Eval-Harness
python3 -m lm_eval \
--model openai-completions \
--model_args engine=davinci \
--task crows_pairs_english_age
Step 1: Start the local proxy
$ litellm --model huggingface/bigcode/starcoder
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
Step 3 Run with FLASK
git clone https://github.com/kaistAI/FLASK
cd FLASK/gpt_review
Run the eval
python gpt4_eval.py -q '../evaluation_set/flask_evaluation.jsonl'
MLflow provides an API mlflow.evaluate()
to help evaluate your LLMs https://mlflow.org/docs/latest/llms/llm-evaluate/index.html
Pre Requisites​
pip install litellm
pip install mlflow
Step 1: Start LiteLLM Proxy on the CLI​
LiteLLM allows you to create an OpenAI compatible server for all supported LLMs. More information on litellm proxy here
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
Step 2: Run ML Flow​
Before running the eval we will set openai.api_base
to the litellm proxy from Step 1
openai.api_base = "http://0.0.0.0:8000"
import openai
import pandas as pd
openai.api_key = "anything" # this can be anything, we set the key on the proxy
openai.api_base = "http://0.0.0.0:8000" # set api base to the proxy from step 1
import mlflow
eval_data = pd.DataFrame(
{
"inputs": [
"What is the largest country",
"What is the weather in sf?",
],
"ground_truth": [
"India is a large country",
"It's cold in SF today"
],
}
)
with mlflow.start_run() as run:
system_prompt = "Answer the following question in two sentences"
logged_model_info = mlflow.openai.log_model(
model="gpt-3.5",
task=openai.ChatCompletion,
artifact_path="model",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": "{question}"},
],
)
# Use predefined question-answering metrics to evaluate our model.
results = mlflow.evaluate(
logged_model_info.model_uri,
eval_data,
targets="ground_truth",
model_type="question-answering",
)
print(f"See aggregated evaluation results below: \n{results.metrics}")
# Evaluation result for each data record is available in `results.tables`.
eval_table = results.tables["eval_results_table"]
print(f"See evaluation table below: \n{eval_table}")
Continue-Dev brings ChatGPT to VSCode. See how to install it here.
In the config.py set this as your default model.
default=OpenAI(
api_key="IGNORED",
model="fake-model-name",
context_length=2048, # customize if needed for your model
api_base="http://localhost:8000" # your proxy server url
),
Credits @vividfog for this tutorial.
$ pip install aider
$ aider --openai-api-base http://0.0.0.0:8000 --openai-api-key fake-key
pip install pyautogen
from autogen import AssistantAgent, UserProxyAgent, oai
config_list=[
{
"model": "my-fake-model",
"api_base": "http://localhost:8000", #litellm compatible endpoint
"api_type": "open_ai",
"api_key": "NULL", # just a placeholder
}
]
response = oai.Completion.create(config_list=config_list, prompt="Hi")
print(response) # works fine
llm_config={
"config_list": config_list,
}
assistant = AssistantAgent("assistant", llm_config=llm_config)
user_proxy = UserProxyAgent("user_proxy")
user_proxy.initiate_chat(assistant, message="Plot a chart of META and TESLA stock price change YTD.", config_list=config_list)
Credits @victordibia for this tutorial.
NOTE: Guidance sends additional params like stop_sequences
which can cause some models to fail if they don't support it.
Fix: Start your proxy using the --drop_params
flag
litellm --model ollama/codellama --temperature 0.3 --max_tokens 2048 --drop_params
import guidance
# set api_base to your proxy
# set api_key to anything
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:8000", api_key="anything")
experts = guidance('''
{{#system~}}
You are a helpful and terse assistant.
{{~/system}}
{{#user~}}
I want a response to the following question:
{{query}}
Name 3 world-class experts (past or present) who would be great at answering this?
Don't answer the question yet.
{{~/user}}
{{#assistant~}}
{{gen 'expert_names' temperature=0 max_tokens=300}}
{{~/assistant}}
''', llm=gpt4)
result = experts(query='How can I be more productive?')
print(result)
Proxy Configs​
The Config allows you to set the following params
Param Name | Description |
---|---|
model_list | List of supported models on the server, with model-specific configs |
litellm_settings | litellm Module settings, example litellm.drop_params=True , litellm.set_verbose=True , litellm.api_base |
Example Config​
model_list:
- model_name: zephyr-alpha
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: huggingface/HuggingFaceH4/zephyr-7b-alpha
api_base: http://0.0.0.0:8001
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: https://<my-hosted-endpoint>
litellm_settings:
drop_params: True
set_verbose: True
Quick Start - Config​
Here's how you can use multiple llms with one proxy config.yaml
.
Step 1: Setup Config​
model_list:
- model_name: zephyr-alpha
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: huggingface/HuggingFaceH4/zephyr-7b-alpha
api_base: http://0.0.0.0:8001
- model_name: gpt-4
litellm_params:
model: gpt-4
api_key: sk-1233
- model_name: claude-2
litellm_params:
model: claude-2
api_key: sk-claude
Step 2: Start Proxy with config​
$ litellm --config /path/to/config.yaml
Step 3: Start Proxy with config​
If you're repo let's you set model name, you can call the specific model by just passing in that model's name -
Setting model name
import openai
openai.api_base = "http://0.0.0.0:8000"
completion = openai.ChatCompletion.create(model="zephyr-alpha", messages=[{"role": "user", "content": "Hello world"}])
print(completion.choices[0].message.content)
Setting API Base with model name If you're repo only let's you specify api base, then you can add the model name to the api base passed in -
import openai
openai.api_base = "http://0.0.0.0:8000/openai/deployments/zephyr-alpha/chat/completions" # zephyr-alpha will be used
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world"}])
print(completion.choices[0].message.content)
Save Model-specific params (API Base, API Keys, Temperature, etc.)​
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
Step 1: Create a config.yaml
file
model_list:
- model_name: gpt-3.5-turbo
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2 # azure/<your-deployment-name>
api_key: your_azure_api_key
api_version: your_azure_api_version
api_base: your_azure_api_base
- model_name: mistral-7b
litellm_params:
model: ollama/mistral
api_base: your_ollama_api_base
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Model Alias​
Set a model alias for your deployments.
In the config.yaml
the model_name parameter is the user-facing name to use for your deployment.
E.g.: If we want to save a Huggingface TGI Mistral-7b deployment, as 'mistral-7b' for our users, we might save it as:
model_list:
- model_name: mistral-7b # ALIAS
litellm_params:
model: huggingface/mistralai/Mistral-7B-Instruct-v0.1 # ACTUAL NAME
api_key: your_huggingface_api_key # [OPTIONAL] if deployed on huggingface inference endpoints
api_base: your_api_base # url where model is deployed
Set Custom Prompt Templates​
LiteLLM by default checks if a model has a prompt template and applies it (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the config.yaml
:
Step 1: Save your prompt template in a config.yaml
# Model-specific parameters
model_list:
- model_name: mistral-7b # model alias
litellm_params: # actual params for litellm.completion()
model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1"
api_base: "<your-api-base>"
api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
initial_prompt_value: "\n"
roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
final_prompt_value: "\n"
bos_token: "<s>"
eos_token: "</s>"
max_tokens: 4096
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Proxy CLI Arguments​
--host​
- Default:
'0.0.0.0'
- The host for the server to listen on.
- Usage:
litellm --host 127.0.0.1
--port​
- Default:
8000
- The port to bind the server to.
- Usage:
litellm --port 8080
--num_workers​
- Default:
1
- The number of uvicorn workers to spin up.
- Usage:
litellm --num_workers 4
--api_base​
- Default:
None
- The API base for the model litellm should call.
- Usage:
litellm --model huggingface/tinyllama --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
--api_version​
- Default:
None
- For Azure services, specify the API version.
- Usage:
litellm --model azure/gpt-deployment --api_version 2023-08-01 --api_base https://<your api base>"
--model or -m​
- Default:
None
- The model name to pass to Litellm.
- Usage:
litellm --model gpt-3.5-turbo
--test​
- Type:
bool
(Flag) - Proxy chat completions URL to make a test request.
- Usage:
litellm --test
--alias​
- Default:
None
- An alias for the model, for user-friendly reference.
- Usage:
litellm --alias my-gpt-model
--debug​
- Default:
False
- Type:
bool
(Flag) - Enable debugging mode for the input.
- Usage:
litellm --debug
--temperature​
- Default:
None
- Type:
float
- Set the temperature for the model.
- Usage:
litellm --temperature 0.7
--max_tokens​
- Default:
None
- Type:
int
- Set the maximum number of tokens for the model output.
- Usage:
litellm --max_tokens 50
--request_timeout​
- Default:
600
- Type:
int
- Set the timeout in seconds for completion calls.
- Usage:
litellm --request_timeout 300
--drop_params​
- Type:
bool
(Flag) - Drop any unmapped params.
- Usage:
litellm --drop_params
--add_function_to_prompt​
- Type:
bool
(Flag) - If a function passed but unsupported, pass it as a part of the prompt.
- Usage:
litellm --add_function_to_prompt
--config​
- Configure Litellm by providing a configuration file path.
- Usage:
litellm --config path/to/config.json
--telemetry​
- Default:
True
- Type:
bool
- Help track usage of this feature.
- Usage:
litellm --telemetry False